APT Group Sends Spear Phishing Emails to Indian Government
Officials

June 03,2016 | by Yin Hong Chang, Sudeep Singh | Targeted Attack

Introduction

On May 18,2016, FireEye Labs observed a suspected Pakistan-based APT group sending spear phishing emails to Indian government officials.
This threat actor has been active for several years and conducting suspected intelligence collection operations against South Asian political and
military targets.

This group frequently uses a toolset that consists of a downloader and modular framework that uses plugins to enhance functionality, ranging
from keystroke logging to targeting USB devices. We initially reported on this threat group and their UPDATESEE malware in our FireEye
Intelligence Center in February 2016. Proofpoint also discussed the threat actors, whom they call Transparent Tribe, in a March blog post.

In this latest incident, the group registered a fake news domain, timesofindiaal.Jin, on May 18, 2016, and then used it to send spear phishing
emails to Indian government officials on the same day. The emails referenced the Indian Governments 7th Central Pay Commission (CPC).
These Commissions periodically review the pay structure for Indian government and military personnel, a topic that would be of interest to
government employees.

Malware Delivery Method
In all emails sent to these government officials, the actor used the same attachment: a malicious Microsoft Word document that exploited the
CVE-2012-0158 vulnerability to drop a malicious payload.

In previous incidents involving this threat actor, we observed them using malicious documents hosted on websites about the Indian Army, instead
of sending these documents directly as an email attachment.

The email (Figure 1) pretends to be from an employee working at Times of India (TOI) and requests the recipient to open the attachment
associated with the 7th Pay Commission. Only one of the recipient email addresses was publicly listed on a website, suggesting that the actor
harvested the other non-public addressees through other means.

From: Mewes Desk

Date: wWednesday, May 18, 2016 6:27 PM
To:

Subject: PC Review

Attach: 7th CPC Pay Matrix Update.doc (1,19 ME)

Hellg <redacted=
| am sunita from TOI, Final report is attached for review as <redacted> asked me to mail a copy to you.
Let me know if i can assist you further regarding this.

Figure 1: Contents of the Email

A review of the email header data from the spear phishing messages showed that the threat actors sent the emails using the same infrastructure
they have used in the past.

Exploit Analysis
Despite being an older vulnerability, many threat actors continue to leverage CVE-2012-0158 to exploit Microsoft Word. This exploit file made
use of the same shellcode that we have observed this actor use across a number of spear phishing incidents.

BIEC1218 mow [edi+*GlobalTable .dwTenpPathLength], eax

BIECI21B mow [edi+eax+GlobalTable.szTempPath], "s\.."
BIEC1226 mow dword ptr [edi+eaxs 1. ‘ohcu’
BIECI231 mow dword ptr [edireaxs 1. 'e.ts’
BIECAZIC mow dword ptr [edi+eaxe 1. ‘ex’
BIECA247 mov [edi+GlobalTable.pszFakeSUCHostPath], esi
BIECI25A mow edx, [edi+GlobalTable.pHemHappedRtfFile]
BIECA25D xor BCX, BCX
v 5 v
e
BIEC125F

BIECI124F loc_JEC124F: H
BIECI25F add BCK, 4
BIECA252 cmp word ptr [edx+ecx], GBABAK
BIECI258 jnz short loc_3ECA124F

"

Find BxBABABABA in rtf Ffile

¥
e
BIEC12%A cmp word ptr [edx+ecx+2], BBABAR
BIAEC1261 jnz short loc_ 3ECA124F
|
vy
F™E
BIEC1263

BIEC1263 loc_3EC1263:

BIEC1263 dinc edx

BIEC1264 cmp byte ptr [edx+ecx], HE

BIEC1268 jz short loc_3EC1263 ; Eat up remaining Bxba
T

¥

F™E]
BAEC126A lea

edx, [edx+ecx] ; Pointer to data after BABABA...

BIECA1260 =or ebx, ebx ; ebx counter
BIEC126F lea eck, [edi+] : decode buffer
*Ji ¥
F™E
BIEC1275

BIEC1275 loc_JEC1275:

BIEC1275 mov eax, [edx+ebx]
BIECH1278 cnp eax, @

BIEC127B jz short loc_3EC1282
FI™E

BIEC127D xor eax, BCAFEBABEh

'

e

BIEC1282

BIEC1282 loc_3EC1282:

BIEC1282 mov [ecx+ebx], eax

BIEC1285 add ebx, 4

BIEC1288 cmp word ptr [edx+ebx], GBEBBh ; Check For end pattern BEBBEBBB
BIEC128E jnz short loc_3EC1275

Figure 2: Exploit Shellcode used to Locate and Decode Payload

The shellcode (Figure 2) searches for and decodes the executable payload contained in memory between the beginning and ending file markers
0xBABABABA and 0xBBBBBBBB, respectively. After decoding is complete, the shellcode proceeds to save the executable payload into
%temp%\svchost.exe and calls WinExec to execute the payload. After the payload is launched, the shellcode runs the following commands to
prevent Microsoft Word from showing a recovery dialog:

cmd.exe /creg delete
"HKCU\ Software\Microsoft\ Office\ 14.0\Word\Resiliency” /F
cmd.exe /creg delete
"HKCU\ Software\Microsoft\ Office\ 12.0\Word\Resiliency" /F

Lastly, the shellcode overwrites the malicious file with a decoy document related to the Indian defense forces pay scale / matrix (Figure 3),
displays it to the user and terminates the exploited instance of Microsoft Word.

Pay Matrix (Defence Forces Personnel - Except SINS)
Fal Band 020200 004000 6003901 2wty e ol I IEE
Grads Pal 2o | zeo0 | o0 | vese | oo | ase | eee | s g0 | e | mece | woo | mse 1000
Ime Pal2 P | 19400 | seno | wnaeo | t2me | 1300 | wrvo | o | moso | 2wco | zeeo | eed | aseo | aes00 | meee | mooe | evoco | TS0 | meeeo | asom
Intl 3 1 s 5 0 T B [3 i a | 13 | 13a 14 15 16 17 18
tndex mr | aar| 27 | 262 | 2er [2ex | 2ex | 22 | 2 | 0w wr | ;my | 257 [mr |2 | av2 | 2w | am | 2m
T FIA00 | 0 | 5000 | TO00 | 6800 | 800 | A7a00 | B0 | 60 | G000 | ESA00 | T9ERO0 | TR0 | 1300 | 000 | 1550 | 600 | 23000 | Sson |
; “EH0 | 750 | 000 | V00 | S0 | SEG00 | S0 | BAT0 | GO0 | ENO0 | TIS00 | RRG00 | 125500 | TS0 | a0 | S50 | FHe
3 a0 | I | o | R | SN | 4o | S0 | SO00 | S0 | 60 | TN | LEa0 | 1o | eOs00 | 15000 | N0 | Aok
(] THOO | 370 | T 00 | 1300 | GJ000 | THEN) | TS0 | VA0 | ves | 15700 | TR | e
] HE | | s | B _| o0 | w0 | T | 139000 | a0 | 11000 | T | s
g R0 | 00 | 0600 | W00 | 4TI00 | GO0 | G0 | GU00 | GGG | 7IN0 | BORDD | M0G0 | VSN0 | 9SG0 | fera0 | F0W0
T 0 | 0600 | M000 | 00 | 4G00 | G000 | G0 | GO0 | GO0 | 7000 | IGB0D | 136000 | 1000 | 960600 | 1720 | AvEm
3 e SEQ | EBE0D | GE200 | GBDOD | TOA0 | BEN00 | 9430 | 15800 | 966000 | 177400 224100
[] T7800 | 300 | 37000 | R0 | 400 | 29500 | GDA0D | G700 | TH0 | TUR0 | EVO0 | 470D | tmco0 | OO0 | 00
W A0 | X0 | 000 | GO0 | AG00 | GO0 | R0 | GO0 | OO0 | S000 | WSO | Wai0 | 000 | 1S | deoan
1 G | RN | W | S | AR | (0NN | G | FOO0 | FeR0 | S0 | nn | wieon | v | s | v
] 0 | 00 | ADEN | 500 | 46000 | 6200 | G0 | TN | W00 | STS00 | BGD | 961500 | 174N | wet00 | 1o
=] TH0 | 36400 | 49600 | AT | SOE00 | 64900 | G000 | THAO0 | 80000 | &M | SE00 | 9eE000 | 1Tw | M0 | aeen
H S0 | S | Ge | e | SO0 | GEOO | Moo | TR0 | Eeon | S0000 | 1000 | 1M00 | 16 | HeSG | vt
3 TI000 | 000 | A0 | NN | NN | G000 | 20 | D0 | SO0 | W00 | 100000 | 10 | Ve Fi-]
3 0 | 00 | A0 | G900 | S0 | 70000 | A0 | EGO0 | G700 | SEE0 | 90RN0D | WEIAW0 |
7 S0 | 9000 | 4600 | B0 | GO0 | 700 | TAS00 | B5W0 | S0000 | SN0 | TIHDD | READ
L] T | A | A0 | S0 | G | A0 | N | AITOD | RGO | 900 | 1HAR00 | me
] A0 | 400 | 4960 | W00 | G0N | PR | 100 | W00 | SAA00 | 90wM0 | TR0
] SEO0 | 4400 | G900 | S0 | GGAN) | FEAN | G0 | GN00 | Ge400 | 9050 | izwn
il 00 |) | SR | aood | e | a0 | B0 | a0 | en00 | 10 | s
n A0600 | ATS00 | 54000 | 00 | GE000 | E0EO0 | BATOD | GETOD | 0400 | 194000 | 1200
@ A | AR | G0 | GRR | G000 | SO0 | Va0 | WA | SaVtn | viie | idein
F A0 | Eoax) | STR00 | GEO0 | OO0 | BENUO | BANI0 | 108300 | 19000 | 120600 | 108000

Figure 3: Decoy Document related to 7th Pay Commission

The decoy document's metadata (Figure 4) suggests that it was created fairly recently by the user Bhopal.

app l1cation/msworc
: Bhopal
emplate : Normal
Last Modified By : Bhopal
- - - 7

Rev n Number 2

software : Microsoft Ooffice word
otal Edit Time - 0

Create Date : 2016:05:13

Modify Date : 2016:05:13

Figure 4: Metadata of the Document

The payload is a backdoor that we call the Breach Remote Administration Tool (BreachRAT) written in C++. We had not previously observed
this payload used by these threat actors. The malware name is derived from the hardcoded PDB path found in the RAT: C:\Work\Breach Remote
Administration Tool\Release\Client.pdb. This RAT communicates with 5.189.145.248, a command and control (C2) IP address that this group
has used previously with other malware, including DarkComet and NJRAT.

The following is a brief summary of the activities performed by the dropped payload:

1. Decrypts resource 1337 using a hard-coded 14-byte key "MjEh92jHaZZO013". The encryption/decryption routine (refer to Figure 5) can be
summarized as follows:

d [Instruction External symbol

IDA View-A | Pseudocode-A (£ | [B] Hexview-1 | [A] structures | H Enums | 5z Import
uh = B8;
uil9 = az2;
do /7 Generate Table

u17[u5] = v5;
++uh;

H
while { uvS ¢ 256 });
LOBYTE(v6) = B8;

ui = B8;

ug = B8;

do // Permuation of Table using Decryption Key
{

u9 = =(BYTE =){uvi + aZ);
ulB = vi7[u8];
az = vi9;
u6 = {unsigned int8){v17[u8] + v? + udb);
Ui =7 + 1 £ uig T u7 +1 @ 8;
result = vi7[vb];
u17[v8++] = result;
v17[va] = viB;
b
while { vd < 256 });
ui2 = a5;
LOBYTE(v13) = 8;
uil = ak;
for { LOBYTE(viS) = @; vi2; —--ui2) /¢ Decryption Function
{
++uil;
uis (unsigned _ int8)(uvi5 + 1});
vld ul7[vi5]s
ul3 {unsigned int8){u17[v15] + v13);
u17[ui5] = vi7[ui3];
u17[v13] = vié6;
result = v17[{unsigned _ int8){v16 + v17[v15])}];
*#(BYTE =){uvi4d - 1) "= pesult;
e

return result;

Figure 5: Encryption/ Decryption Function

¢ Generate an array of integers from 0x00 to Oxff

¢ Scrambles the state of the table using the given key

e Encrypts or decrypts a string using the scrambled table from (b).

e A python script, which can be used for decrypting this resource, is provided in the appendix below.

2. The decrypted resource contains the C2 servers IP address as well as the mutex name.

3. If the mutex does not exist and a Windows Startup Registry key with name System Update does not exist, the malware performs its
initialization routine by:

e Copying itself to the path %PROGRAMDATA %\svchost.exe
¢ Sets the Windows Startup Registry key with the name System Update which points to the above dropped payload.

4. The malware proceeds to connect to the C2 server at 5.189.145.248 at regular intervals through the use of TCP over port 10500. Once a
successful connection is made, the malware tries to fetch a response from the server through its custom protocol.

5. Once data is received, the malware skips over the received bytes until the start byte 0x99 is found in the server response. The start byte is
followed by a DWORD representing the size of the following data string.

6. The data string is encrypted with the above-mentioned encryption scheme with the hard-coded key AjN28 AcMaNX.

7. The data string can contain various commands sent by the C2 server. These commands and their string arguments are expected to be in
Unicode. The following commands are accepted by the malware:

Command Description

LOGIN =username:= Logs the user in with given username

DOWNLOADEXEC <url> Downloads and executes file from URL given
by C2 server

UPDATE <url= Downloads and executes file from URL given
by C2 server and then exiting

DISCONNECT Exits process

UNISTALL Exits process and removes startup registry
key

REMOTECMD <dir> <cmd= Runs the given command in given directory
and replies with the output

FILEMANAGER <dir= Returns a textual Ul view ofthe given
directory

FILEMANAGERDL <path=> Downloads the file at the given path

FILEMANAGERUP <path= <data= | Stores given data atthe given path

FILEMANAGEREXEC <path= Executes the binary at the supplied path

FILEMANAGERUPDATE Removes startup registry key and executes
the binary at the supplied path

Conclusion

As with previous spear-phishing attacks seen conducted by this group, topics related to Indian Government and Military Affairs are still being
used as the lure theme in these attacks and we observed that this group is still actively expanding their toolkit. It comes as no surprise that cyber
attacks against the Indian government continue, given the historically tense relations in the region.

Appendix

Encryption / Decryption algorithm translated into Python

def encrypt_decrypt(key, text):
table = range(0, 256)
key_iterator =0
state =0
Scramble table
for table_iterator in range(0, 256):
key_byte = key[key_iterator]
state = (table[table_iterator] + ord(key_byte) + state) & Oxff

table_iterator_backup = table[table_iterator]
table[table_iterator] = table[state]
table[state] = table_iterator_backup

key_iterator +=1
key_iterator = key_iterator % len(key)

state2 =0
output =[]
for idx, ch in enumerate(text):
_dx=idx+1
state2 = (table[_idx] + state2) & Oxff
tmp_table = table[_idx]
table[_idx] = table[state2]
table[state2] = tmp_table
result = table[(tmp_table + table[_idx]) & 0xff]
output.append(chr(ord(ch) * result))

return output

This entry was posted on Fri Jun 03 01:30:00 EDT 2016 and filed under APT, Latest Blog Posts, Spear Phishing, Sudeep Singh, Targeted Attack and Yin Hong Chang.

