
The Ghost Dragon
blog.cylance.com/the-ghost-dragon

By Isaac Palmer April 22, 2016

Introduction

Cylance SPEAR™ has identified an APT group which deploys multiple customized malware implants, targeting
mainly Chinese and Russian users. Cylance determined that the ‘Ghost Dragon’ group utilized specifically tailored
variants of Gh0st RAT, which the group modified from the 3.6 version of the source code released in 2008. Newly
implemented security mechanisms in the altered malware makes identification of Gh0st RAT Command and Control
network traffic more difficult for both security products and researchers.

This write-up provides initial disclosure of a portion of the malware and infrastructure used by the Ghost Dragon
group and covers the new security mechanisms in detail, as well as revealing how researchers were able to
communicate with the custom implant by rebuilding and compiling a customized Gh0st RAT controller.

The Standard Gh0st RAT Protocol
The standard network protocol for Gh0st RAT 3.6 employs zlib compression, which utilizes ‘Gh0st’ as a static five-
byte packet flag that must be included in the first five bytes of initial transmission from the victim (as seen in Figure
1). During the initial login request, the 3.6 version of Gh0st RAT enumerates system information and transmits that
information to the controller. The proceeding eight bytes of the packet contain both compressed and uncompressed
size information followed by the zlib compressed data, starting with bytes 78 9C at offset 14 (shown in Figures 1 and
2, below).

 Figure 1: Standard Gh0st RAT 3.6 packet login request |
Victim to controller

After a successful login, the controller returns an acknowledgment to the victim with the correct header using the
packet flag which it is programmed to verify, as seen in Figure 2. The connection will be established only if the
packet flags match.

1/7

https://blog.cylance.com/the-ghost-dragon
https://blog.cylance.com/author/isaac-palmer
javascript:void(0);
https://en.wikipedia.org/wiki/Gh0st_RAT
https://blog.cylance.com/

Figure 2: Standard Gh0st RAT 3.6 packet response | Controller to victim – 22 bytes

Following the first five bytes, the packet then shows the full packet size and the uncompressed data size. The Gh0st
packet header for version 3.6 uses the 13-byte format shown in Figure 3:

Figure 3: Gh0st RAT 3.6 header format

After the packet flag, packet length and unzip length have been verified, a working connection is created between
the victim and the controller. Subsequent keep-alive transmissions ensure a continuous connection.

Once Gh0st RAT is connected, the attacker has full remote administration tool (RAT) functionality via the controller.
Available remote functionality includes:

• Fully functional remote desktop display, including the ability to remotely block user input

• Fully functional file manager that lists local and network drives

• Ability to interact with running processes

• Ability to interact via the command console

• Key logging

• Audio capture

• Webcam capture

• Ability to send ‘Windows style’ alerts to the victim, which can display any text the attacker enters
into the controller

These features ensure complete remote control of the computer.

Changes to the Gh0st RAT Protocol
In an older version of the customized Gh0st RAT malware, the protocol packet flag is no longer represented by the
string ‘Gh0st’. The Ghost Dragon group modified the source code and changed the packet flag to ‘XYTvn’, as seen
in Figure 4. The packet structure still implements the same 13-byte header format, including the starting zlib
compression bytes of ‘78 9C’:

2/7

Figure 4: XYTvn static packet flag | Victim to controller login request

Sample: f9a669d22866cd041e2d520c5eb093188962bea8864fdfd0c0abb2b254e9f197

In a more recent version of the modified Gh0st RAT malware, Ghost Dragon implemented dynamic packet flags
which change the first five bytes of the header in every login request with the controller. This complicates identifying
its network traffic, as the header bytes in the zlib compressed data section no longer start with ‘78 9C’, as shown in
Figure 5.

In some cases this was achieved through a simple XOR obfuscation of the packet data, beginning with the zlib
header. SPEAR has observed numerous different XOR keys utilized by the group. No changes to the compression
have been found; however, it is trivial to implement a modified compression protocol.

Figure 5: Dynamic packet flag | Victim to controller login request

Sample: 1be9c68b31247357328596a388010c9cfffadcb6e9841fb22de8b0dc2d161c42

(Note: At the time of this report, the C2 for the sample was active and the malware could still establish an active
connection to the Ghost Dragon controller at bbs.winupdate[dot]net. Currently, the domain bbs.winupdate[dot]net
resolves to 122.10.18[dot]166).

The reply from the active command and control server can be seen in Figure 6:

3/7

Figure 6: Dynamic packet flag | Controller to victim login reply

Sample: 1be9c68b31247357328596a388010c9cfffadcb6e9841fb22de8b0dc2d161c42

Connecting to the Ghost Dragon Malware
After successful identification of the malware as Gh0st RAT and confirmation of the modified command and control
protocol, the final step toward verification was to connect with the malware to ensure that it would parse the normal
Gh0st RAT commands.

I was able to compile a custom controller from the source code for the purposes of testing the Ghost Dragon
malware. I bypassed the header checks looking for the ‘Gh0st’ packet flag, and reprogrammed the standard Gh0st
RAT controller to reply with the packet flag sent from the victim.

I used sample 6c7f8ba75889e0021c4616fcbee86ac06cd7f5e1e355e0cbfbbb5110c08bb6df for testing, which
was executed by f9a669d22866cd041e2d520c5eb093188962bea8864fdfd0c0abb2b254e9f197 during analysis
on Windows XP. This sample transmitted the static five byte packet flag ‘XYTvn’.

I ran the victim malware and changed the host’s file to point the domain to a host-only IP address. I received a
connection attempt from the victim and a response from the controller returned the correct packet flag. Afterward,
the keep-alive packets between the victim and controller maintained the connection, which allowed me to test the
functionality of 6c7f8ba75889e0021c4616fcbee86ac06cd7f5e1e355e0cbfbbb5110c08bb6df with the custom
Gh0st RAT controller.

The following screen shots were obtained while connected to the malware:

Figure 7: Main connection view | Connected to
6c7f8ba75889e0021c4616fcbee86ac06cd7f5e1e355e0cbfbbb5110c08bb6df

The HOSTNAME field shown in Figure 7 was programmed in my custom controller to display ‘Gh0st variant’, just in
case the incoming structure parsed from the victim did not match the format of the default ‘LOGININFO’ structure
from Gh0st RAT 3.6.

I attained full functionality using the Gh0st 3.6 protocol in the controller, despite the fact that the incoming structure
was not exactly what my customized controller expected. As shown in Figure 8, I successfully added an

4/7

administrative user while remotely connected via my custom Gh0st RAT console within the malware dropped from
sample f9a669d22866cd041e2d520c5eb093188962bea8864fdfd0c0abb2b254e9f197.

Figure 8 demonstrates that some of the characters in the window are not in English and are not displayed properly
on the form. This is due to the fact that the characters were written in Mandarin in the original Gh0st RAT 3.6 source.
I changed phrases in the main connection window (Figure 7) for demonstration purposes only.

Figure 8: Remote shell | Adding admin user | Connected to
6c7f8ba75889e0021c4616fcbee86ac06cd7f5e1e355e0cbfbbb5110c08bb6df

The remaining features of the Gh0st RAT protocol were tested successfully with the custom Gh0st RAT controller
while connected to 6c7f8ba75889e0021c4616fcbee86ac06cd7f5e1e355e0cbfbbb5110c08bb6df.

Additional analysis into other samples is ongoing and more information will be forthcoming.

Network IOCs and Infrastructure Overlap

A48f881f254dc8452561a8f13e2fb81933473ff22e549787f0ca67f19ba7fe67
File name: Air China 2015 April TIMETABLE .xls
Malware type: Initial Infection Vector/ XLS file
Network Activity Summary: Drops the downloader
71a52058f6b5cef66302c19169f67cf304507b4454cca83e2c36151da8da1d97

71a52058f6b5cef66302c19169f67cf304507b4454cca83e2c36151da8da1d97
File name: AdobeWpkReg.tmp
Malware type: Downloader
Network Activity Summary: Uses HEAD method (instead of GET) | Calls out to info.winupdate[dot]net/robots.txt |
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; NULL[5(1)]Windows NT 6.1; Trident/6.0)
Note: User Agent is variable depending on the version info of the host

1be9c68b31247357328596a388010c9cfffadcb6e9841fb22de8b0dc2d161c42
File name: iconfig.exe
Malware type: Gh0st RAT variant
Network Activity Summary: bbs.winupdate[dot]net | Port 8080
Packet flag: Dynamic

f9a669d22866cd041e2d520c5eb093188962bea8864fdfd0c0abb2b254e9f197
File name: install.exe

5/7

Malware type: Gh0st RAT variant
Network Activity Summary: ooxxxoo.gicp[dot]net | Port 8080 | Also connects to www.winupdate[dot]net on port
8080
Packet flag: Static: XYTvn
Note: On Windows XP, may drop a replacement DLL for the AppMgmt service using ClimateVMain export
SVC_sha256: 6c7f8ba75889e0021c4616fcbee86ac06cd7f5e1e355e0cbfbbb5110c08bb6df. The hash of the
dropped file may change on different versions of Microsoft Windows

99ee5b764a5db1cb6b8a4f62605b5536487d9c35a28a23de8f9174659f65bcb2
File name: install.exe
Malware type: Gh0st RAT variant
Network Activity Summary: www.searchhappynews[dot]com | Port 80
Packet flag: Static | XYTvn

b803381535ac24ce7c8fdcf6155566d208dfca63fd66ec71bbc6754233e251f5
File name: ExtensionManager.exe
Malware type: Gh0st RAT variant
Network Activity Summary: www.fhtd[dot]info | Port 1081
Packet flag: Dynamic

Infrastructure Overlap

Domain | Previous IP resolution
bbs.winupdate[dot]net | 122.10.18.166
www.fhtd[dot]info | 122.10.18.166
info.winupdate[dot]net | 122.10.36.94

During investigation into the infrastructure used by Ghost Dragon, an anonymous FTP server was discovered on
one of the IP addresses listed above, which hosted ‘info.winupdate[dot]net | 122.10.36.94’.

Upon obtaining the files on the FTP server, an older Gh0st RAT variant was obtained with the file name
‘operas.exe’. This variant sends the system info to the controller in clear text for the login request.

fb5a7cb34040b1e98b077edaf91cb59a446d8ff07263afe875cf6bd85bfb359d
File name: operas.exe
Malware type: Gh0st RAT variant
Network Activity Summary: www.swgabeg[dot]com | Port 1080 | Clear text login request sent to controller
Packet flag: Dynamic

Appendix A – IP and Domain Listing

IP addresses:

101.55.33.39
103.232.215.144
103.246.245.147
111.68.8.130
112.125.17.103
113.10.148.161
113.10.148.205
122.10.18.166
122.10.36.94
122.10.41.85

6/7

122.10.83.75
122.10.85.35
122.9.247.128
122.9.247.134
122.9.247.216
122.9.247.56
123.254.111.87
142.4.103.90
174.128.255.228
175.45.192.234
202.172.32.172
202.174.130.116
203.232.28.10
209.85.84.165
209.85.84.167
31.170.179.179
58.64.187.22
60.215.128.246
64.111.220.218

Domains:

info.winupdate[dot]net
bbs.winupdate[dot]net
ooxxxoo.gicp[dot]net
www.winupdate[dot]net
www.searchhappynews[dot]com
www.fhtd[dot]info
www.swgabeg[dot]com

Tags: Gh0st Dragon, Gh0st RAT

7/7

https://blog.cylance.com/topic/gh0st-dragon
https://blog.cylance.com/topic/gh0st-rat

	The Ghost Dragon
	The Standard Gh0st RAT Protocol
	Changes to the Gh0st RAT Protocol
	Connecting to the Ghost Dragon Malware

